

Checklist for Using Fybrel[™] Synthetic Pulp

Fybrel™ fibrillated polyolefin pulp has been used in many commercial papermaking systems and other systems designed for handling fibers. Runability of Fybrel™ has been very good; few problems have been experienced. This checklist is designed as an aid for planning and conducting trials in a wet process.

DISPERSION

- Many applications can tolerate some fiber bundles. Dispersion is then less critical, and conditions can be adjusted accordingly.
- Union pulping: Add Fybrel™ to pulper, disperse, and then add wood pulp.

A. CONSISTENCY

* Recommend 2.0 to 3.0 wt% for first trial.

(A Fybrel[™] slurry is slightly more viscous or heavier than a wood pulp slurry of same consistency.)

B. TEMPERATURE

* Dispersion quality improves as water temperature increases. (Temperature for optimum dispersion is 50°C.)

C. TIME

Depends on temperature, consistency, Fybrel™ grade or type, pulper design and dispersion quality needed.

(30 minutes is typical for good dispersion quality with E-400, 3% consistency and 50°C.)

D. TEST

* View diluted sample in glass cylinder or on blue glass.

(Addition of a thickener to increase viscosity greatly aids visual inspection of dispersion quality.)

E. DEFLAKER OR DISC REFINER

* A deflaker or disc refiner at low power can substantially improve dispersion quality.

REFINING

- Fybrel™ pulp does not need refining.
- Cutting type of refining can shorten the Fybrel™ fibers (not desired). Brush refining can entangle or fuse the Fybrel™ fibers if plate clearance is too small or power input too high. Use visual test to check for fiber damage (see item D under <u>DISPERSION</u>).

A. REFINING PROCEDURES

- * Best method is to add Fybrel[™] pulp to pre-refined wood pulp.

 (Especially important if wood pulp is heavily refined)
- * Blends of wood pulp and Fybrel™ can be refined.

(Disc refiners have given best results. Too heavy refining can cause fiber bundles.)

B. MACHINE REFINING

- * Generally gives no problems.
- * Heavy refining can cause fiber bundles.

PAPER MACHINE

- Fybrel™ pulp behaves much like wood pulp, but is also plastic and thus sensitive to temperature and pressure.
- A certain machine clean-up frequency is associated with every paper grade. Furnishes containing Fybrel™ pulp will also have characteristic machine clean-up frequencies. This is frequency must be determined by experience for each machine and grade in the same manner as with all-wood pulp furnishes.

A. WET END

- * May need small adjustments in headbox consistency, foils and vacuums.
- * No problems with trim or wet broke.
- * Very occasional problems have occurred with wire release from Fybrel™ fibers sticking into wire.

B. PRESSES

* Usually no problems if the wood pulp furnish does not pick.

(Fybrel[™] pulp furnishes generally have slightly more picking tendency than all-wood pulp furnishes.)

* Normal cleaning (showers, doctors) is effective with Fybrel™ pulp.

C. DRYERS

- * Fybrel™ pulp melts at 125 to 135°C (E-type Fybrel™), 105 to 125°C (UL-type Fybrel™).
- * Recommend maximum dryer temperature of 115°C (E-type Fybrel™), 105°C (UL-type Fybrel™).

(At least during early trials until experience is gained) (Web temperature will not exceed about 100°C until almost dry.)

* Sticking occurs if dryer too hot.

D. YANKEE DRYER

* Too high temperature can cause sticking.

(Maximum temperature depends mainly on web moisture leaving Yankee, Fybrel[™] pulp content, furnish, and dryer surface condition.)

* Recommend starting with low temperature (e.g. 85°C) and gradually increasing.

(Properly fitting doctor is important.)

E. FRICTION POINTS

- * Contact between stationary items and the moving web will generate heat and cause formation of plastic needles. Controls are:
 - (1) Remove friction point
 - (2) Limit heat buildup by web speed, tension, or external cooling.

F. CALENDER

* Normally use lower loading than with wood pulp.

- * Too hot rolls can cause sticking.
- * Reduce web moisture in proportion to Fybrel™ pulp content.

WINDING AND CONVERTING

- Webs containing Fybrel™ pulp have performed satisfactorily on a wide variety of converting equipment: coaters, printers, laminators, extrusion coaters, die cutters, envelope machines, board molding machines, presses, embossers, etc.

A. FRICTION POINTS

* Plastic needles form if heat generation is sufficient (see item E under <u>PAPER MACHINE</u>).

(Tendency toward needle formation decreases as the paper roll cools)

* Slitters should run slightly faster than the web.

(Plastic film can form around stationary or high speed slitters.)

B. SPLICING TAPE

* Avoid heat-sensitive tape (melts Fybrel™ pulp during tape application).

C. HEAT TREATMENT

* Sticking may occur between the dry web and surfaces heated about 110°C (Etype Fybrel™), 100°C (UL-type Fybrel™).

REPULPING

- * Repulping is possible provided the Fybrel™ fiber has not been fused or melted by high pressure or temperature. Recommended conditions are:
 - (1) Heated water (up to 70°C).
 - (2) Maximum agitation.
 - (3) Gradual loading of broke.
 - (4) Lower consistency and/or increased pulping time.

Fybrel™ Fibrillated Polyolefin Pulps available from

MUNIFIBERS, INC.

2923 Boones Creek Road Johnson City, TN 37615 Phone: (423) 282-4242 Fax: (423) 282-1450 www.minifibers.com